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ABSTRACT
Event recognition in unconstrained Internet videos has great
potential in many applications. State-of-the-art systems
usually include modules that need extensive computation,
such as the extraction of spatial-temporal interest points,
which poses a big challenge for large-scale video processing.
This paper presents SUPER, a Speeded UP Event Recog-
nition framework for efficient Internet video analysis. We
take a multimodal baseline that has produced strong per-
formance on popular benchmarks, and systematically eval-
uate each component in terms of both computational cost
and contribution to recognition accuracy. We show that, by
choosing suitable features, classifiers, and fusion strategies,
recognition speed can be greatly improved with minor per-
formance degradation. In addition, we also evaluate how
many visual and audio frames are needed for event recog-
nition in Internet videos, a question left unanswered in the
literature. Results on a rigorously designed dataset indicate
that similar recognition accuracy can be attained using only
14 frames per video on average. We also observe that, differ-
ent from the visual channel, the soundtracks contains little
redundant information for video event recognition. Inte-
grating all the findings, our suggested SUPER framework is
220-fold faster than the baseline approach with merely 3.8%
drop in recognition accuracy. It classifies an 80-second video
sequence using models of 20 classes in just 4.56 seconds.

Categories and Subject Descriptors
I.2.10 [Artificial Intelligence]: Vision and Scene Under-
standing—Video analysis; H.3.1 [Information Storage and
Retrieval]: Content Analysis and Indexing—Indexing meth-
ods

General Terms
Algorithms, Experimentation, Performance.

Keywords
Internet videos, event recognition, efficiency, multimodal fea-
tures, frame selection.
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Figure 1: Examples of two events in Internet videos.

1. INTRODUCTION
The amount of videos on the Internet has grown explo-

sively in recent years. This motivates an urgent need of
techniques for automatically recognizing high-level complex
video events (see examples in Figure 1), which are important
in applications such as video search, smart advertising, and
intelligence monitoring. State-of-the-art video event recog-
nition systems often deploy a diverse set of features and
classifiers in order to achieve a good accuracy. For instance,
one of the popularly used features is spatial-temporal in-
terest points (STIP) [7], which typically requires expensive
analysis of every frame in a video sequence. While promising
results have been reported on several benchmark datasets,
such kind of systems are computationally too slow to deal
with large-scale data in real-world applications.

This paper discusses and evaluates various options to im-
prove event recognition efficiency, while still maintaining a
high degree of accuracy. Our work is built upon a multi-
modal baseline that is the core of top-performing systems
in NIST TRECVID benchmark evaluations [1]. We assess
the computational cost and accuracy contribution of each
component in this baseline approach, and identify alterna-
tive methods and implementations for speed improvement.
These evaluations lead to a Speeded UP Event Recognition
(SUPER) framework, which cleverly utilizes several multi-
modal features and classifiers that can be computed effi-
ciently.

Apart from evaluating features and classifiers, another im-
portant question we intend to answer in this paper is “how
many visual and audio frames are needed for recognizing
complex events in Internet videos?”. Existing approaches



usually compute visual and audio features from entire video
sequences [10, 5]. However, human recognition performance
indicates that many events may be identified based on only
a small fraction of the sequences (or even by viewing a sin-
gle frame, e.g., the birthday celebration event). We therefore
conduct an in-depth empirical study on the number of re-
quired frames for video event recognition. To the best of our
knowledge, this problem has never been thoroughly investi-
gated in the context of Internet video analysis. Our evalua-
tion is performed under a multimodal setting, where we also
discuss the similarities and distinctions of visual and audio
modalities in terms of the minimum information needed for
event recognition. Such a study can provide very useful in-
sights for choosing a suitable number of frames in the design
of an efficient event recognition system.
One may argue that the contents of Internet videos are

too diverse. As a result it could be very difficult to se-
lect representative subsets of frames for event recognition,
since an event may happen anywhere. While this is true
to a certain extent, it is worth noting that videos recorded
and uploaded by ordinary consumers are mostly very short
and contain only a single story with fairly consistent scene
settings. As a result there may be a significant amount of
redundant information if all frames are computed. In this
work we focus on consumer videos, the dominant role in In-
ternet video sharing activities. Other types of videos on the
Web, such as sports, news, sitcoms and movies, normally
have plenty of textual tags and descriptions, and therefore
do not really need deep content recognition to facilitate ef-
fective search and organization. In addition, applications
like intelligence monitoring are basically only interested in
the unconstrained consumer videos.
The remaining sections are organized as follows. We dis-

cuss related works in Section 2 and introduce a simple and
effective baseline system for video event recognition in Sec-
tion 3. Section 4 elaborates various options for speeded up
event recognition and Section 5 discusses experimental re-
sults. Finally, Section 6 summarizes this paper.

2. RELATED WORKS
Compared with human action classification, recognizing

complex events in unconstrained Internet videos is a new
topic receiving significant research attentions. Traditional
methods on action analysis purely relied on visual features
[8, 10], while recent advances have shown that—for Internet
videos—event recognition can benefit from the use of audio
features [9, 5]. A typical event recognition process first ex-
tracts a number of multimodal features from video files, and
then applies machine learning algorithms (e.g., support vec-
tor machines – SVM) for classification. In this section we
mainly introduce related works that have specifically con-
sidered recognition speed.
Due to the high computational cost of extracting well-

performing features like SIFT, several works have devised
various alternatives to speed up this process. In [2], SURF
(speeded up robust feature) was proposed as a fast image
keypoint detector and descriptor. Knopp et al. [6] extended
SURF to detect and describe 3D spatio-temporal keypoints.
Further, researchers found that the time-consuming key-
point detection process can be omitted by using dense sam-
pling, i.e., uniform grid-based selection of local image patches.
Dense sampling has been shown to produce comparable or
even better performance in visual recognition tasks [17]. In

addition, a recent evaluation by Uijlings et al. [26] showed
that the dense SIFT and dense SURF descriptors can be
extracted more efficiently with a smart engineering design
that eliminates repetitive computations of pixel responses
of overlapped image regions. Compared with these visual
features, acoustic descriptors like Mel-frequency cepstral co-
efficients (MFCC) can be computed much more efficiently
and therefore it is less critical to optimize the speed of au-
dio feature extraction.

The number of feature descriptors (e.g., SIFT or SURF)
varies across different videos, posing difficulties for classi-
fiers which normally require fixed-dimensional inputs. One
popular solution to this problem is the bag-of-word repre-
sentation, where descriptors in a set are quantized into a
word frequency histogram using a pre-computed vocabulary
(e.g., through clustering a subset of the descriptors). The
quantization process is expensive using brute-force nearest
neighbor search. In [16], Nister et al. showed that quantiza-
tion can be executed very efficiently if words in the vocab-
ulary are organized in a tree structure. In [14], Moosmann
et al. further adopted random forest, a collection of binary
decision trees, to achieve fast quantization and more accu-
rate recognition. In [27], Yu et al. extended semantic texton
forests [23] from 2D to 3D spatiotemporal analysis for fast
action recognition.

The most widely used classifier for video content recog-
nition is SVM. One expensive component in SVM classifi-
cation is the computation of nonlinear kernels such as His-
togram Intersection and χ2. In [12], Maji et al. showed
that histogram intersection kernels can be computed in log-
arithmic complexity to the number of support vectors. This
method has been tested on image and video classification
tasks with promising performance [26]. Alternatively, the
simple and highly efficient linear kernel has been shown to
work well with high-dimensional representations like Fisher
vectors [20].

Schindler and van Gool conducted an interesting study to
evaluate the number of required visual frames for human
action recognition [21]. Their experiments indicate that
a single frame is already enough for recognizing many ac-
tions. However, this study was performed on Weizmann
and KTH datasets, which consist of very short action videos
recorded under fully controlled environment with clean back-
ground. Therefore their observations are unlikely to be gen-
eralizable under the realistic setting of Internet consumer
videos. Moreover, in addition to evaluating the number of
required visual frames, we also comparatively study the min-
imum length of audio soundtracks (i.e., the number of audio
frames) needed for event recognition, which has never been
investigated in prior works.

3. A BASELINE SYSTEM FOR VIDEO
EVENT RECOGNITION

To optimize speed we first need a reliable baseline system.
For this, we consider a multimodal approach that lies in the
heart of top-performing systems at TRECVID evaluations
2010 [5] and 2011 [15]. The best reported results in [5, 15]
are slightly better than this simple baseline by using many
more features (e.g., dense STIP), classifiers, and/or sophisti-
cated multimodal fusion strategies, which require significant
additional computation.

Figure 2 depicts the baseline event recognition pipeline.



Figure 2: Pipeline of a baseline video event recogni-
tion system. Three sets of audio-visual features are
extracted and mapped to fixed-dimensional vectors
using the popular bag-of-words framework. SVM
classifiers are then applied to the three modalities
separately, and prediction scores are merged via
(late) average fusion.

Three visual and audio features are extracted and repre-
sented under the bag-of-words framework. Recognition is
then performed by classifying the three features indepen-
dently using SVM. Finally, prediction scores from the three
SVM are consolidated by average fusion. We briefly describe
each component of the system below.

SIFT: SIFT feature has been popular for years, exhibit-
ing top-notch performance in many visual recognition tasks.
Here two sparse keypoint detectors, Difference of Gaussian
[11] and Hessian Affine [13], are adopted to find local in-
variant image patches from video frames. Each keypoint
is described by a 128-dimensional gradient histogram [11].
Since keypoint detection on every frame is computationally
expensive and nearby frames are visually very similar, we
sample one frame every two seconds. Nonetheless, the uni-
formly sampled frames from entire video sequences may still
contain redundant information, as will be examined later in
Section 5.

Spatial-Temporal Interest Points (STIP): STIP cap-
tures a space-time volume in which pixel values have large
variations in both space and time. Laptev’s algorithm is
adopted [7] to locate STIPs, which are described by His-
tograms of Oriented Gradients (HOG) and Histograms of
Optical Flow (HOF). HOG and HOF are 72-dimensional
features computed in the neighborhood of each detected 3D
local volume, and are concatenated as the final descriptor
(144 dimensions).

MFCC: Research in neuroscience has revealed that multiple
senses can work together to largely enhance human percep-
tion [24]. Therefore in the baseline system acoustic features
are also considered to complement the visual features for
machine recognition of video events. Specifically, the well-

known MFCCs are computed for every 32ms time-window
(an audio frame) with 50% overlap.

Bag-of-Words Representation: To map the three fea-
ture sets with different cardinalities to fixed-dimensional
vectors, the bag-of-words representation is adopted. Given
a video clip, the features extracted from each frame (SIFT)
or an entire sequence (STIP and MFCC) are collapsed into
a single bag. For SIFT, two visual vocabularies of 500 words
are clustered for DoG and Hessian keypoints separately, and
two spatial layouts 1×1 and 2×2 are used to generate bag-of-
words histograms of 5,000 dimensions (2×500× (1+2×2)).
SIFT word histograms of the uniformly sampled frames are
averaged to generate a single feature vector for each video
sequence. For STIP and MFCC, vocabularies of 5,000 words
and 4,000 words are used respectively. No spatial/temporal
partitioning is used for either. For all the three features, a
soft-weighting scheme is employed to alleviate the quantiza-
tion effects in generating bag-of-words features [3]. During
quantization, the similarities between features and words
(cluster centers) are computed by inner product of L-2 nor-
malized vectors (equivalent to using Euclidean distance). As
reported by Uijlings et al. [26], this simple trick gives a 43%
speed-up over direct computation of Euclidean distances.

Classification and Result Fusion: χ2 kernel SVM is
trained separately using the three bag-of-words features. Be-
cause some event categories are not mutually exclusive, one-
versus-all strategy is used to train three SVM models for
each event. Given a test video, its bag-of-words features are
used as input of the SVM models, and prediction scores are
combined by average fusion (mean value of the scores). This
fusion strategy is commonly referred to as late fusion, since
multimodal information is fused after classification.

4. SUPER: SPEEDED UP EVENT RECOG-
NITION

In this section we discuss several possible ways to speed up
the baseline system. While efficiency can be easily improved
by adopting fast feature extraction/quantization methods
and efficient classification kernels, we do not consider these
as the main contribution of this paper as they have been
(separately) studied in prior works. Instead, we directly take
some of the off-the-shelf findings in feature computation and
classifier design, and conduct two new and important inves-
tigations: 1) a comparative analysis of a variety of features
(in terms of both recognition accuracy and efficiency); and 2)
an evaluation of the number of needed visual/audio frames
in Internet video event recognition. Details are introduced
as follows.

4.1 Frame Sampling
Frame sampling can be regarded as a data preprocessing

step. Using too few frames from each video sequence may
result in poor performance because of incomplete informa-
tion, while running on every frame will be computationally
expensive. The main purpose of our study is to seek empiri-
cal insights in selecting the most suitable number of frames,
so that a good tradeoff between speed and accuracy can be
achieved. This is partially motivated by a recent analysis
of human perception performance in [4], which showed that
human annotators could provide very precise labels (around
80% accuracy) with an average working time much shorter



Figure 3: Video segment selection for frame sam-
pling. Given a desired length, we chop three seg-
ments in the beginning, centered in the middle, and
at the end of each video, respectively.

than mean video length.
As introduced earlier, in the baseline system audio frames

are densely sampled over every 32ms window (16ms overlap)
and visual frames are extracted uniformly with 2-second in-
tervals. These audio and visual frames form the basis for
down-sampling, and we are interested in the relationship be-
tween the number of selected audio/visual frames and recog-
nition accuracy. There are mainly two strategies to down-
sample the frames: uniform sampling – selecting frames uni-
formly across an entire sequence, and segment-based sam-
pling – selecting frames continuously from a short video seg-
ment. Both will be evaluated in the experiments. For the
latter, we test segments chopped in the beginning, around
the middle, and at the end of the videos, in order to study
which part contains the most informative/discriminative in-
formation. Figure 3 visualizes our simple segment selection
method.

4.2 Feature Representation
Due to speed limitation, some well-performing features

such as STIP become less appropriate. In this work we
mainly focus on evaluating the accuracy and speed of various
visual features, which are more expensive to compute com-
pared with audio features like MFCC. In addition to the
baseline features, we consider several other popular visual
features as listed below.

DIFT and DURF: To get around expensive computation
of sparse keypoint detection, we adopt Uijlings’ fast imple-
mentation of dense SIFT and dense SURF, dubbed DIFT
and DURF [26]. Given a video frame, each kind of features
are converted to a bag-of-words histogram based on a visual
vocabulary of 500 words. Three spatial layouts are used
(1× 1, 3× 1 and 2× 2). 3× 1 (not in the baseline) is added
due to its popularity in several well-performing image/video
analysis systems.

Self-Similarities (SSIM): SSIM is computed by quantiz-
ing a correlation map of an image patch within a larger
circular window [22]. Patch size and the window radius are
set as 5 × 5 and 40 pixels respectively. Similar to DIFT
and DURF, SSIM descriptors are computed over densely
sampled image patches, and converted to bag-of-word his-
tograms using a visual vocabulary of 500 words and the same
spatial layouts.

Color Moment (CM): The first three moments of three
channels in Lab color space are calculated over a 5× 5 grid.
The 9 moments from each of the 25 image partitions are
concatenated into a 225-d vector.

GIST: It computes the output energy of Gabor-like filters
(8 orientations, 4 scales) over a 4 × 4 image grid [19]. The
final descriptor is 512-d (8× 4× 4× 4).

Local Binary Patterns (LBP): LBP is a popular texture
feature which uses binary numbers to label each pixel of an
image by comparing its value to that of neighborhood pixels
[18]. We follow the standard settings to use 8 neighbors,
which lead to a vector of 256 dimensions per video frame
(28).

Tiny Images (TINY): TINY [25] is probably the most
simple feature one can compute, which directly concatenates
image pixel values in RGB space. Images are resized to
a very small scale (32 × 32) in order to reduce feature di-
mension and the effect of misalignment. This descriptor is
3,072-d (32× 32× 3).

For bag-of-words quantization of the feature sets (i.e.,
DIFT, DURF, and SSIM), we continue to use inner prod-
uct of L-2 normalized vectors. Applying random forest can
further reduce the quantization time, as observed in several
existing works discussed in Section 2.

4.3 Classification and Multimodal Fusion
For both classification and multimodal fusion, we take

findings from the state-of-the-arts for speed improvement.
Specifically, in SVM classification, we compare Maji’s effi-
cient histogram intersection kernel [12] with the baseline χ2

kernel.
Generally speaking, the fusion of multimodal features can

be done at three different stages, namely early fusion, kernel
fusion, and late fusion. Early Fusion concatenates multi-
ple feature vectors of a video sample into a very long vector,
which is then used for classification. Kernel Fusion adds
kernels computed by different features into one kernel for
SVM learning. The difference from early fusion is that fea-
tures from multiple modalities are used separately to com-
pute kernels. Early fusion and kernel fusion are equivalent
when using some simple kernels (see discussions in the next
paragraph). For both early and kernel fusion, only one clas-
sifier needs to be trained. Instead of combining multiple
modalities before classification, Late Fusion feeds kernels
of different features into separate SVM classifiers and then
fuses SVM prediction scores. Throughout this paper, we
adopt average fusion (equal fusion weights) to combine ker-
nels or classification scores. Average fusion has been popu-
larly used in multimodal classification due to its simplicity.
Although there are many ways for adaptively selecting fusion
weights (e.g., by cross validation or multiple kernel learn-
ing), the learned weights have been frequently reported to
be over-fitted to training data, i.e., they do not generalize
well to new test data.

Computationally, early/kernel fusion is more efficient in
both model training and testing than late fusion since the
latter uses more SVM models. Speed of early and kernel
fusion does not differ too much. When complex kernels
like χ2 are in use, kernel fusion is slightly slower as we
need to compute the exponential function in kernels mul-

tiple times (χ2 kernel is computed as K(x,y) = e
−ρd

χ2 (x,y)
,

where dχ2() returns the χ2 distance of the two input vec-
tors). For typical histogram intersection kernel computed
as K(x,y) =

∑
i min{xi, yi}, early and kernel fusion (with

equal weights) are apparently identical. We evaluate all the
three strategies in our experiments.



Figure 4: Examples of 20 categories in Columbia
Consumer Video dataset. 15 categories are events,
and 5 (circled) are objects and scenes.

5. EXPERIMENTS

5.1 Dataset and Evaluation
Columbia Consumer Video (CCV) dataset [4]1 is adopted

in our experiments. CCV is to our knowledge the largest
publicly available dataset on Internet consumer videos. It
has 9,317 YouTube videos, which are divided into a training
set and a test set, containing 4,659 and 4,658 videos respec-
tively. Average video duration is around 80 seconds (about
210 hours in total). 20 categories were carefully defined
based on user studies and annotated using Amazon Mechan-
ical Turk platform. Figure 4 gives an example for each cat-
egory. Detailed definitions can be found in [4]. Among the
20 categories, 15 are events. Although our focus is on event
recognition, all the 20 categories are evaluated in order to
facilitate benchmark comparison. On average, there are 394
positive samples per category, which are evenly distributed
in the training and test sets.
In testing, SVM prediction scores are used to rank the test

set according to the probability that each video contains
a category. Recognition accuracy is measured by average
precision (AP). We report mean AP (mAP) over all the
categories due to space limitation.
Computational efficiency is measured by the time used

separately in feature extraction and classification (with var-
ious kernels and fusion schemes). Speed of feature extrac-
tion is measured by the average time needed for processing
a video sequence (30fps) of 80 seconds, the average duration
of CCV. Specifically, since one frame is sampled every 2 sec-
onds, for the frame-based features (e.g., SIFT and DURF),
we report time for computing 40 frames (320×240 pixels, a
standard frame size of YouTube videos). Classification speed
of a video is measured by the average time for classifying all
the 20 categories.
For software implementation, we use popular public codes

for each module, e.g., sparse keypoint detectors from INRIA-

1http://www.ee.columbia.edu/dvmm/CCV/

Table 1: Recognition accuracy (mAP) and computa-
tional efficiency of various features and their combi-
nations. Efficiency is measured in seconds needed
for extracting features of an 80-second video se-
quence (cf. Section 5.1). The combination of fea-
tures, indicated by “+”, is done by late average fu-
sion.

Feature(s) mAP Time

SIFT 0.523 82.00
STIP 0.449 916.80
MFCC 0.331 2.36

SIFT+STIP 0.551 998.80
Baseline (SIFT+STIP+MFCC) 0.595 1001.16

DIFT 0.493 8.68
DURF 0.513 6.60
SSIM 0.463 37.16
CM 0.324 4.88
GIST 0.325 5.40
LBP 0.285 0.68
TINY 0.229 0.32

DIFT+DURF 0.514 15.28
DIFT+SSIM 0.525 45.84
DURF+SSIM 0.538 43.76

DIFT+DURF+SSIM 0.539 52.44
CM+GIST 0.407 10.28

CM+GIST+LBP 0.438 10.96
CM+GIST+LBP+TINY 0.434 11.28

DURF+SSIM+CM+GIST+LBP 0.545 54.72

Baseline+DURF+SSIM+CM+GIST+LBP 0.626 1055.88
MFCC+DURF+SSIM+CM+GIST+LBP 0.593 57.08

MFCC+DURF+CM+GIST+LBP 0.584 19.92
MFCC+DURF 0.567 8.96

LEAR2, STIP from Laptev [7], DIFT/DURF from Uijlings
[26], fast histogram intersection SVM from Maji [12], etc.
With optimization, the efficiency of some codes may be im-
proved, which is however beyond the scope of this work. All
the speed evaluations are conducted on a regular PC with
an Intel Core2 Duo 2.4GHz CPU and 2GB RAM.

In the following we experimentally evaluate the factors
discussed in Section 4 for speeded up event recognition.
We move frame selection to the end of the evaluation since
it may be sensitive to other components, particularly the
choice of features.

5.2 Selecting Features
First, let us evaluate the recognition accuracy and compu-

tational efficiency of multimodal features. Results are sum-
marized in Table 1. Late average fusion of the three baseline
features (SIFT, STIP, and MFCC) offers a decent mAP of
0.595. Although the three features are complementary, i.e.,
significant mAP gain is attained via fusion, SIFT (based on
sparse detectors) and STIP are computationally too slow.
In addition, the most expensive feature STIP does not show
superior performance compared with the frame-based SIFT
feature. This is probably due to the fact that most events,
even the complex ones like wedding ceremony, can be iden-
tified based on static objects and scene settings.

As shown in the second group of results in Table 1, the
features introduced in Section 4.2 are efficient. Among them
the slowest, SSIM, only costs 45% of the time needed for ex-
tracting the sparse SIFT. We also test various combinations
to see whether these new features are complementary. As

2http://lear.inrialpes.fr/software



can be seen, DIFT is not complementary to DURF. Among
the four global features (CM, GIST, LBP, TINY), TINY is
the worst and combining it with the others results in mi-
nor mAP degradation (0.438→0.434). Therefore, DIFT and
TINY are discarded, and the fusion of the remaining five
features gives an mAP of 0.545.
Combining the baseline with the five newly selected fea-

tures we obtain an mAP of 0.626. Since SIFT and STIP
are expensive to compute, we only retain MFCC from the
baseline. This leads to three feature sets for fast event recog-
nition, as shown in the bottom three rows of Table 1. Fusing
MFCC with all the five produces similar performance to the
baseline, but is 17 times faster. By removing the most ex-
pensive SSIM feature among these remaining ones, mAP
drops marginally to 0.584 with a significant speed-up of 50
times over the baseline system. Further, by only adopting
MFCC and DURF, we can still attain a fairly good mAP
of 0.567 (vs. baseline mAP 0.595), with a speed-up of 111
times. Notice that for both MFCC and DURF, a consider-
able amount of computations is spent on bag-of-words quan-
tization (inner product of L-2 normalized vectors is used).
As discussed earlier, with tree-based vocabularies like ran-
dom forest, this quantization time can be largely reduced.
Since we will also try to down-sample the number of com-
puted frames, and as a result the quantization time can be
further compressed, this option is not implemented in the
current version of SUPER.

5.3 Selecting Classifiers and Fusion Strategies
We now evaluate classifiers and fusion strategies. For clas-

sifier, we compare SVMs with Maji’s fast approximation of
histogram intersection kernel (fastHI), standard histogram
intersection kernel (HI), and the baseline χ2 kernel. MFCC
and the five newly selected features are used in this experi-
ment. Results are given in Figure 5.
As shown in Figure 5(a), χ2 kernel outperforms HI and

fastHI for all the evaluated features. mAP gap ranges from
0.03 (DURF) to as high as 0.09 (LBP). Recognition accuracy
of fastHI is almost the same to that of standard HI, which is
consistent with the results reported in [12]. For speed (Fig-
ure 5(b-c)), fastHI is around 200-400 times faster than HI,
and HI is only slightly faster than χ2. These are different
from observations in [26], where fastHI was reported to be
only 18 times faster than χ2 and 3 times faster than stan-
dard HI. One main reason is that precomputed kernels were
adopted in [26], which can be reused for multiple classes and
therefore the effect of fastHI is limited. Since precomputed
kernels are not applicable to Internet-scale data, this strat-
egy is not preferred in practice.
We further compare the three fusion strategies. Figure 6

visualizes the results on two selected feature sets. There
are two important observations from this experiment. First,
kernel/early fusion outperforms the baseline late fusion for
both HI and fast HI kernels. While for χ2 kernel, kernel
fusion is the best, and early fusion performs similar to late
fusion. These results reveal that the popular late fusion
strategy is probably not a good option for multimodal event
recognition. We attribute this to the fact that combining
features before model learning may result in a kernel space
where event classes are more separable. Second and very
interestingly, for all the three fusion strategies, the accu-
racy gap between the χ2 and HI/fastHI kernels is generally
smaller than that on the individual features (see individual
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Figure 5: Recognition accuracy and efficiency of χ2,
HI and fastHI kernels. Efficiency is measured by the
average time for classifying a video using classifiers
of all the 20 categories.

feature results in Figure 5(a)), particularly when more fea-
tures are used. As shown in Figure 6(a), using kernel fusion,
mAPs of fusing the six features are almost the same across
all kernel choices (χ2 0.617 vs. HI/fastHI 0.616). For the
fusion of MFCC and DURF (Figure 6(b)), the mAP num-
bers are 0.594 (χ2) and 0.559 (HI/fastHI). Such insensitivity
to kernel choice under multimodal fusion settings is a very
attractive observation since we can adopt the very efficient
fastHI kernel without hurting recognition accuracy signifi-
cantly.

Computational efficiency of the three fusion strategies is
similar. As expected, we only observe a marginal speed-up
from early/kernel fusion over late fusion. Take the fusion of
the six features as an example, early/kernel fusion requires
2.03 seconds to classify a video using HI kernel, and late
fusion needs 2.18 seconds. While for fastHI, the former uses
4.8 milliseconds and latter costs 5.6 milliseconds.

To summarize, fastHI is a preferred kernel for SUPER
since it is much faster than the others. Although it shows
significantly lower recognition accuracy than χ2 kernel when
classifying several features independently (e.g., LBP), after
multimodal fusion we see no significantly accuracy degrada-
tion from fastHI. In addition, kernel fusion is recommended
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Figure 6: Comparison of early, kernel and late fu-
sion. (a) Fusion of six features: MFCC, DURF,
SSIM, CM, GIST, and LBP; (b) Fusion of MFCC
and DURF.

since it shows consistently good performance on both eval-
uated feature sets using all the three kernels.

5.4 Selecting Frames
Next we evaluate the suitable number of frames required

for event recognition in Internet videos. We use MFCC and
DURF that have been found effective and efficient by pre-
vious experiments. Using both audio and visual features we
can also study the distinctions of the two modalities in terms
of the minimum number of needed frames.
Figure 7 shows recognition accuracy versus the maximum

number of used frames. We use “max number/duration”
because some videos may be shorter than the evaluated du-
rations, for which we simply compute features from all the
frames. We see that the mAP of MFCC drops rapidly when
reducing the number of audio frames, indicating that the en-
tire soundtracks are useful for event recognition. In contrast,
the recognition accuracy of the visual feature DURF remains
stable until a maximum of just 16 frames (i.e., a total du-
ration of 32 seconds) are used. This shows that the visual
frames contain much more redundant information than the
audio counterpart and therefore can be down-sampled safely,
which is very appealing as the visual features are generally
more expensive to be extracted. Note that for the option
“max 16 frames”, on average there are only 14 visual frames
computed per video, which are about 1/3 of all the frames,
i.e., those used by the option “ALL” in Figure 7(b). In other
words, we can save 2/3 of the visual feature extraction time
without loosing recognition accuracy. This observation is
different from the results on human action recognition in
[21], which showed that a single frame is enough. Such dis-
tinction is as expected since both our video data and the
visual classes are more complicated than that used in [21].
Among the four sampling strategies, uniform sampling

clearly outperforms the three options of continuous sam-
pling. This is not surprising because nearby frames are
more likely to be similar, and thus uniform sampling leads to
frame sets with less redundant information. In addition, we
also find that “End” is not as good as “Beginning” and“Mid-
dle”, indicating that the last segments of the videos contain
(slightly) less informative contents.
Overall, results in this experiment show that event recog-
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Figure 7: Recognition accuracy by sampling various
numbers of audio/visual frames. For visual feature
DURF, a good accuracy can be maintained with
a maximum of 16 frames per video (uniform sam-
pling), while for audio feature MFCC, we suggest
using all the frames.

nition speed can be improved with no performance loss by
selecting a subset of visual frames and 1/3 may be a good
proportion for down-sampling. By combining DURF (max
16 frames) and MFCC (entire sequence) with early fusion,
we obtain an mAP of 0.557 (fastHI kernel). This is very sim-
ilar to the mAP of fusing entire sequence DURF and MFCC
(0.559).

6. SUMMARY AND DISCUSSION
We have discussed and evaluated various options to im-

prove the speed of event recognition in Internet videos, in-
cluding visual-audio features, classifier kernels, multimodal
fusion strategies, and frame sampling.

For feature representations, our results suggest the use of
audio feature MFCC, efficient visual feature descriptors such
as DURF (fast implementation of dense SURF), and several
efficient global descriptors (e.g., LBP). The two computa-
tionally expensive visual features in the baseline system,
sparse SIFT and STIP, should be discarded and replaced
with the suggested ones.



Table 2: The most favorite components of SUPER,
in comparison with the baseline system.

Baseline SUPER

Vis. frame sampling – Max 16
Aud. frame sampling – –

Features SIFT, STIP, MFCC DURF, MFCC
Classifier χ2 SVM fastHI SVM
Fusion Late Early

mAP 0.595 0.557
Time∗ 1003s 4.56s

∗Classifying a video of 80 s duration, using models of 20 classes.

Several kernels and fusion strategies have been evaluated.
One interesting and important observation is that Maji’s
fastHI kernel performs close to the more expensive χ2 ker-
nel under multimodal fusion settings (cf. Figure 6), although
χ2 significantly outperforms fastHI on many features indi-
vidually (cf. Figure 5(a)). The testing/classification time
of fastHI is two orders of magnitude faster than that of
the χ2 kernel. For multimodal fusion, we observed that
early/kernel fusion offers higher recognition accuracy than
the popularly adopted late fusion.
Another important study conducted in this work was to

examine the suitable number of visual/audio frames needed
for event recognition in Internet videos. Results on CCV
benchmark indicate that we can maintain a high degree of
accuracy by using an average number of just 14 frames per
video, saving 2/3 of the feature extraction time. While for
the audio channel, it is always harmful to down-sample the
frames.
We summarize our recommendations for SUPER in Ta-

ble 2. These carefully selected components lead to a 220-fold
speed-up with marginal accuracy degradation. By adding a
few efficient global features like LBP, recognition accuracy
can be further boosted. On the other hand, there is still
room to improve efficiency, e.g., by employing random for-
est for bag-of-words quantization. One important message
delivered in this paper is that complex events in Internet
videos can be recognized fairly efficiently while maintaining
a competitive accuracy, which is critical to the applicability
of the automatic techniques in large scale problems.
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