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ABSTRACT
Bag-of-visual-words (BoW) has been popular for visual clas-
sification in recent years. In this paper, we propose a novel
BoW expansion method to alleviate the effect of visual word
correlation problem. We achieve this by diffusing the weights
of visual words in BoW based on visual word relatedness,
which is rigorously defined within a visual ontology. The
proposed method is tested in video indexing experiment on
TRECVID-2006 video retrieval benchmark, and an improve-
ment of 7% over the traditional BoW is reported.

Categories and Subject Descriptors: H.3.1 [Informa-
tion Storage and Retrieval]: Content Analysis and Indexing

General Terms: Algorithms, Experimentation.

Keywords: Bag-of-visual-words, visual relatedness, expan-
sion, video indexing.

1. INTRODUCTION
Recently, bag-of-visual-words (BoW) deriving from local

keypoints have shown remarkable performance for image
and video classification [4, 6]. Keypoints are salient image
patches containing rich local information about an image,
which can be automatically detected and represented by var-
ious detectors and descriptors. Keypoints are then grouped
into a number of clusters and each cluster is treated as a vi-
sual word. With its keypoints mapped into the visual words,
an image can be represented as a feature vector according to
the presence or count of each visual word, which forms the
basic visual cue in the classification task. This BoW rep-
resentation is analogous to the bag-of-words representation
for text document.

Under the textual bag-of-words model, a document will
not be retrieved if it does not contain the terms that are in
a query. This will result in poor recall of a retrieval system
when the document contains synonymous terms to the query
terms. In visual word based image/video classification, the
problem may be even more serious. This is due to the fact
that visual words are the outputs of clustering algorithms,
and can be correlated to each other due to the quantization
effect. Motivated by the textual query expansion method
which can be used to effectively alleviate the synonym prob-
lem, we present a novel method for BoW expansion to rem-
edy the effect of visual word correlation. Figure 1 shows an
overview of our approach. Firstly, based on a vocabulary
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Figure 1: Overview of our approach. The visual
word relatedness is rigorously defined in a visual on-
tology and then used for BoW expansion.

of visual words, a visual ontology is constructed to model
the hyponym (is-a) relationship of visual words. Within
the visual ontology, visual relatedness of visual words is rig-
orously defined, similar to estimating semantic relatedness
of textual words using general purpose resources such as
WordNet ontology. Finally, the visual relatedness is cleverly
incorporated into BoW for visual word expansion.

2. VISUAL WORD RELATEDNESS
In this section, we describe our approach for construct-

ing visual ontology and estimating visual relatedness within
the ontology. Given a set of keypoints, we first construct
a visual vocabulary through clustering the keypoints by k -
means algorithm. With the visual vocabulary, a visual on-
tology is further generated by adopting agglomerative clus-
tering to hierarchically group two visual words at a time in
the bottom-up manner. Consequently, the visual words in
the vocabulary are represented in a hierarchical tree, namely
visual ontology, where the leaves are the visual words and
the internal nodes are ancestors modeling the is-a relation-
ship of visual words. An example of the visual ontology is
shown on the upper right of Figure 1. In the visual ontology,
each node is a hyperball in the keypoint feature space. The
size (number of keypoints) of the hyperballs increases when
traversing the tree from leaves to root.

With the visual ontology, similar with the semantic re-
latedness measurements of textual words, the visual relat-
edness of visual words can also be explored by considering
several popular ontological factors such as path length, or
information content (IC). In this paper, we adopt JCN [1] to
estimate the visual relatedness. Denote vi and vj as two vi-
sual words, JCN considers the ICs of their common ancestor



and the two compared words, defined as:

JCN(vi, vj) =
1

IC(vi) + IC(vj) − 2 · IC(LCA(vi, vj))
, (1)

where LCA is the lowest common ancestor of visual words vi

and vj in the visual ontology. IC is quantified as the negative
log likelihood of the word probability. The probability is
estimated by the percentage of the keypoints in a visual
hyperball. For example, the top node “a” in Figure 1 has
IC(a) = 0 since p(a) = 1.

3. BoW EXPANSION WITH VISUAL RELAT-
EDNESS

The visual relatedness is used directly to expand BoW. Let
V be a vocabulary of n visual words: V = (v1, v2, . . . , vn).
With the vocabulary, an image I can be represented as a
feature vector FI = (wv1 , wv2 , . . . , wvn), where wvi denotes
the weight of word vi in the image. Based on the visual
relatedness calculated by JCN, we perform visual word ex-
pansion by diffusing weight wvi of word vi to another word
vj :

wvj = wvj + wvi × JCN(vi, vj) × α, (2)

where α is a parameter to control the degree of influence
of the JCN relatedness. The aim of the word expansion is
to alleviate the problem of visual word correlation. More
specifically, the weight of a word is diffused by the influence
of other ontologically related words. The diffusion inherently
results in the expansion of words in an image to facilitate the
utilization of word-to-word correlation for image compari-
son. For instance, assume that we have a vocabulary of only
two visual words. Given two images each contains one word,
say v1 and v2 respectively. With the traditional BoW rep-
resentation, the L1 distance of the two images is wv1 + wv2 .
After applying the BoW expansion, the distance will be
|wv1 −α×wv2 ×JCN(v1, v2)|+ |wv2 −α×wv1 ×JCN(v1, v2)|,
which is smaller if v1 and v2 are highly related to each other.

While the idea of using BoW expansion appears intuitive,
expanding all the words will sacrifice the sparse property
of the original BoW representation. Hence, a compromising
scheme is to firstly sort the JCN relatedness of all word pairs,
and then only perform expansion for word pairs with higher
relatedness.

4. EXPERIMENTS
To verify the performance of our approach, we conduct

video indexing experiments on TRECVID-2006 dataset where
the training and testing sets consist of 61,901 and 79,484
video shots respectively. The aim of video indexing is to
rank the video shots according to the presence of semantic
concepts. We use the 20 semantic concepts which were se-
lected in TRECVID-2006 evaluation [5]. We select one key
frame per shot, and the keypoints are detected by DoG [3]
and described by SIFT [3]. A recent study in [2] showed
that the performances of BoW are similar on this dataset
for vocabulary sizes ranging from 500 to 10,000. We thus
generate a vocabulary of 500 visual words for efficiency. For
all the key frames, the BoW features are calculated based on
term frequency (tf ). For each semantic concept, two SVM
classifiers are trained respectively using the original BoW
features, and the new features after expansion (BoW-JCN).
Predictions of the SVMs on the testing set are converted
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Figure 2: Performances of BoW and BoW-JCN for
20 semantic concepts.

into posterior probabilities, and the performance evaluation
follows TRECVID’s standard using average precision (AP)
computed over top 2,000 ranked shots.

In our experiments, the parameter α in Eq. 2 is empir-
ically chosen as 0.5. Expansion is performed among word
pairs with relatedness ranking among the top 1%. As a re-
sult, about half of the words are involved in the expansion
process. Figure 2 contrasts the average precisions of BoW
and BoW-JCN. BoW-JCN can improve the performance for
15 out of the 20 concepts, while the performance of the other
5 remains no change or slightly drops. In term of mean aver-
age precision (MAP) over the 20 concepts, the improvement
of BoW-JCN (0.094) over BoW (0.088) is 7%. The results
demonstrate that the visual words are indeed correlated to
each other and using visual relatedness for BoW expansion
is promising to alleviate this problem. Note that a MAP of
0.094 of a single feature approach is already comparable to
the state-of-the-art results on this dataset.

5. CONCLUSION
We have presented a novel method for estimating visual

word relatedness based on a visual ontology. We showed
that the visual relatedness can be used for BoW expansion,
in order to alleviate the problem of visual word correlation.
Results of large-scale video indexing experiments verified the
facts that the visual words are correlated to each other, and
using visual relatedness for BoW expansion can lead to bet-
ter performance.
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