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Abstract

The TRECVID 2016 Multimedia Event Detection
(MED) challenge evaluates the detection perfor-
mances of high level complex events in Internet videos
with limited number of positive training examples
[1]. In this notebook paper, we present an overview
of our system, highlighting on the selection and fu-
sion of multiple classification models from a wide
range of feature representations to improve the per-
formance. Our MED submissions include 5 system
runs for the Pre-Specified (PS) sub-task under 010Ex
and the 100Ex condition, and 2 runs for the Ad-Hoc
(AH) sub-task under the 10Ex condition. We ver-
ify the effectiveness of our developed system by very
competitive results obtained. Especially, our primary
run ranks first in the PS 100Ex EvalFull task.

1 Introduction

Event detection for complex high-level video is a very
difficult task. Some recent survey papers have re-
viewed the existing approaches used in video event
detection systems, covering general frameworks, key
modules as well as deep learning based methods used
to solve this problem [3, 17]. In this paper, we

summarize the methods used in our TRECVID 2016
MED submissions and the results obtained by our
system. Figure 1 gives an overview of our developed
system for the task. The system first extracts the
video features by concept detectors, deep CNN fea-
ture, along with some other traditional visual and
audio features. These extracted features are fed
into trained supervised classifiers to predict the video
events. In addition, we also incorporate some zero-
shot based methods to rank the test videos according
to the estimated relevancies to the target class. In
the end, the selection and fusion module tries to se-
lect the most important models before fusing them
together for the final prediction.

2 System Components

In this section, we briefly introduce each of our used
components in the submitted system.

2.1 Concept Detectors

Concept detectors are proved to be very successful in
video classification and widely used in the previous
MED systems [8]. In this work, we try to incorporate



Table 1: A summary of our submissions.
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the concept information from a wide range of avail-
able image and video datasets to help improve our
classification system performance.

ImageNet-1000: The ImageNet-1000 concepts
comes from the ImageNet contest dataset [10]. The
ImageNet dataset contains around 1.26 million train-
ing images from 1,000 categories. In our system, we
use the pre-trained ResNet152 model to generate the
class prediction probabilities on each frames in the
video by the last softmax outputs [2]. In this way,
the 1000-d outputs are supposed to indicate the like-
lihood of presence of the corresponding classes in each

frame. To get the video level concept scores, we sim-
ply average pool all the frame features in the videos.

ImageNet-20574: Similar to our last year’s sys-
tem, we adopt the concept detectors on the ImageNet
dataset with 20,574 categories [13]. We retrain the
VGG19 model as in [11] on this dataset with ex-
tended class labels and take the last softmax outputs
as high-level semantic concepts. Similarly, average
pooling over all extracted video frames are used.

Places-205: We extract the scene information
from the video by using the concept detectors trained
on the MIT places dataset [20]. The network we
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Figure 1: An overview of the key components in our system.

use to extract the scene concepts is the fine-tuned
AlexNet model. Also, we simply take the final soft-
max outputs as concept scores on each frame and
average pool all the scores in the same video.

ResearchCollection-497:  Our system also
includes the concept detectors trained on
ResearchCollection-497 dataset provided in [19].
This dataset is derived from the original MED’14
Research Collection dataset. It contains 497 man-
ually annotated concepts based on video frame
level. We train 497 concept detectors based on the
annotated frame data. For each test video, we apply
the trained concept detectors on each video frames.
The detection scores are average pooled over all
frames in each video to generate the video concept
scores.

FCVID-239: We first use the 239 video categories
from the recently released Fudan-Columbia Video
Dataset (FCVID) [4] to train the video class detectors
with CNN model, like in our last year’s system [13].

FCVID contains about 90K videos annotated into 239
classes, covering a wide range of topics like social
events, procedural events, objects, scenes, etc. We
take spatial frames as inputs to fine-tune the VGG19
model for classifying the 239 video categories. Simi-
larly, the frame level responses are averaged to obtain
the 233-d video level concept scores for all the MED
videos.

ActivityNet-203: We also use the 203 video cate-
gories from the ActivityNet video dataset to train the
concept detectors with the CNN model. The Activi-
tyNet dataset provides a large scale video benchmark
for human activity understanding. It aims at cover-
ing a wide range of complex human activities that are
of interest to people in their daily living, including
eating, drinking, sports, socializing, household activ-
ities, etc. We use the VGG19 model pre-trained on
ImageNet dataset to extract the FC6 layer features
on the ActivityNet video frames. The frame-level re-
sponses are averaged to obtain the 4096-d video level



features for all the videos. Then SVM classifiers are
trained on the 203 video events as concept detectors.

EventNet-500: The EventNet dataset is another
large scale structured video concept library consisting
of 500 events [18]. It includes automatic detection
models for the video events and constituent concepts
using deep learning with around 95K training videos
from YouTube. Like in the ActivityNet, we use pre-
trained VGG19 model to generate video features and
train SVM classifiers as concept detectors.

Sports-487: The 487 sports related concepts are
defined by the Sports-1M dataset [6]. The Sports-
1M dataset consists of 1 million YouTube videos be-
longing to 487 classes, mainly providing action and
motion concepts annotated at video level. In our ex-
periments, we take the pre-trained C3D model on
Sports-1M dataset to generate the concept scores for
each video [14].

2.2 Global Spatial Features

Deep CNN models have shown their advantages on
various visual recognition tasks, including image clas-
sification, object detection, etc. In our developed sys-
tem, we use two deep CNN models to extract global
spatial features on the videos, as described in the fol-
lowing.

VGG19: The VGG19 model used to extract mid-
level global spatial features is the same as the one
we use in ImageNet-20574 concept detectors [10, 13].
Instead of taking the last softmax outputs, here we
keep the outputs of both the FC6 and FCT7 layers as
mid-level frame features. All the extracted features
are average pooled across the video frames to form
the video level feature representation.

ResNet152: The Residual Network is the win-
ner model for the ILSVRC 2015 competitions in the
ImageNet classification task [2]. We use the 152 lay-
ers version of the network, or ResNet152, pre-trained
on ImageNet dataset to extract frame features of
the MED videos. Here we keep both the Pool5 and
FC1000 layers features extracted by the model. Like
in the case in the VGG19 model, we simply average
pool all the frame features of the video to generate
the video level feature representation.

2.3 Global Spatial Features on Se-
lected Frames

As the MED data mainly contains user generated
videos, it is possible that some of the video frames in a
video clip are not directly relevant to the class label.
In our developed system, we utilize a simple video
frame selection strategy based on concept detectors
in order to alleviate this problem. The main idea is to
select a subset of the concept detectors as discussed
in Section 2.1 and keep only the frames with at least
one high concept score detected. The concept subset
is built by keeping all the relevant concepts related
to the video classes. The relevances are estimated
by the similarity scores between the Word2Vec rep-
resentation of the words in concept names and video
class names. Those frames with all low relevant con-
cept scores are discarded and the extracted features
on these frames will not join the average pooling pro-
cess in the video level feature generation step. In our
system, we only conduct selected frame pooling with
the extracted ResNet152-Pool5 features.

2.4 Object Features

In addition to the global spatial features, we extract
the object level features to describe the video content.
The objects in the video frames, like bikes and dogs,
are highly related some of the video events like bike
tricks and dog shows. To achieve this aim, we use the
Faster RCNN model pre-trained on the MS COCO
dataset to extract the deep CNN object features [7].
The Faster RCNN make the embedded Region Pro-
posal Network (RPN) to detect objects and extract
object features with ROI pooling in an end-to-end
manner [9]. For the video data, we first max pool all
the object features in each video frame to produce
the frame level features. Then the frame level fea-
tures are average pooled across all the video frames
to produce the video level feature representation.
We also use the techniques described in [12] to ex-
ploit the object information in the video data. In
specific, we first treat the prediction scores of the
CNN model trained on ImageNet-20574 data as the
object detection scores on each video frames. Then
a two layer LSTM model is applied to generate the



video level feature representation.

2.5 Motion Features

To capture the motion information, we extract the
improved dense trajectories (IDT) features according
to [15]. Briefly, densely sampled local frame patches
are first tracked over time and three descriptors are
then computed for each trajectory: a 96-d histogram
of oriented gradients (HOG) descriptor, a 108-d his-
togram of optical flow (HOF) descriptor, and a 108-d
motion boundary histogram (MBH) descriptor. We
first reduce the dimension of these descriptors by
a factor of 2 using Principle Component Analysis
(PCA) then we encode these features into Fisher Vec-
tors with a codebook of 256 words.

In addition to the traditional IDT features, we
also extracted C3D features from the video frame se-
quences to capture both appearance and motion in-
formation [14]. The C3D feature is proved to be very
successful in the MED tasks [19]. In our implemen-
tation, both the FC6 and FC7 layer features are kept
in the C3D model.

2.6 Audio Feature

The audio sound tracks contain useful clues for identi-
fying some video semantics which are usually comple-
mentary to the visual features. We utilize the pop-
ular MFCCs (Mel-Frequency Cepstral Coefficients),
which are computed for every 32ms timewindow with
50% overlap and then quantized into a 4000-d soft
weighted bag-of-words representation [5].

2.7 Classification

Similar to our last year’s implementation, we sim-
ply adopt SVMs as the classifiers. Linear kernel
SVM is applied to the IDT features, since it is found
working well with the high-dimensional Fisher vec-
tor based representations. We adopt x2-kernel for all
the other features, including concept detector scores,
deep CNN features and MFCC features. As the -
kernel SVM is much expensive to compute than the
linear kernel one, we use the GPU parallel computing

to aid the calculation of the x? kernels among large
number of training and test MED data.

2.8 Zero-shot Learning

In this year, We further try to use the zero-shot learn-
ing methods to help the video classification in the
MED tasks. This is proved to be effective especially
when training examples are limited. In specific, the
following approaches are used.

OCR: We use the OCR method by tesseract
toolkit to detect characters on the video frames. The
extracted words are pre-processed as in [19] and con-
verted to feature representation by Word2Vec model
pre-trained on the Wikipedia corpus. Relevance be-
tween each word extracted in the video and video
class names are compared by calculating the cosine
distance between their word vectors. Videos with
larger accumulated relevant words to the video class
name are ranked higher.

ASR: Besides the OCR approach, we further use
the ASR methods to extract more text data from the
videos. In our ASR system, we use the Kaldi toolkit
to extract the speaking English scripts in the videos.
The way to deal with the extracted texts are the same
as in the OCR system.

Concepts: As described above, we have already
trained various concept detectors in the supervised
classification systems. These concept detectors and
also be used in the zero-shot component. In specific,
the relevance between each concept names and video
class names can also be directly estimated by calcu-
lating the cosine distance between their word vectors.
In this way, videos with large accumulated relevant
concept scores to the video class name are ranked
higher.

OSF': In our developed system, we further use the
Object-Scene semantic Fusion (OSF) based zero-shot
learning method proposed in [16]. One of the key
assumptions OSF makes for zero-shot recognition is
that object-scene semantic space is a good proxy for
measuring semantic distance of video content, which
means that video samples containing similar objects
and scenes are likely to belong to the same video class.
It compares the object-scene vector representation to
video class prototypes represented in the same object-



scene semantic space. OSF models the prototype of
test classes by some defined OSR matrix. More de-
tails are available in [16].

2.9 Fusion

Given the prediction scores of multiple models, we
can capture the video characteristics from different
aspects.

It is critical to effectively fuse the multiple scores
to generate the final predictions. For the MED video
data, some classes are strongly related with partic-
ular objects that could be effectively recognized by
the CNN features, while others may contain dramatic
movements so motion features such as IDT can con-
tribute more significantly. On the other side, some
extracted features may not be suitable at predict-
ing certain video events. For example, we find it
very helpful to use object features to predict events
like parking cars and tailgating, possibly thanks to
its successful detection of cars in the video frames.
While the object features work poorly in events like
metal crafts, possibly due to its incapability of good
quality feature extraction related to the metal craft
event.

To explicitly select a subset of good important
models for the video classification, we first evalu-
ate the classification performance of every models on
a split validation set from the training set. Then
we rank each models by the evaluated mAP in de-
creasing order. The subset is selected by setting an
MAP threshold and keep only the top ranked models.
To fuse the classification scores, we heuristically sum
the prediction scores weighted by the corresponding
MAP scores evaluated on the validation set.

In addition to the heuristic weighting strategy, we
also try to use linear regression and logistic regression
to learn the fusing weights of each type of features by
the validation set.

3 Result and Discussion
In TRECVID MED 2016, we submitted 5 runs for the

PS sub-task under both 10Ex and 100Ex conditions.
We also submitted 2 runs for AH sub-task under the

10Ex condition. The submission details are listed in
Table 1. In the AH sub-task, the ASR and OCR
models are not used. For the fusion methods with
0-1 normed scores described in the table, we simply
normalize the all SVM outputs to the range of 0-1
using the scale coefficients learnt on training data.

The evaluation results of MED 2016 are displayed
in Figure 2 to 6. Figure 2 and 3 show the perfor-
mance of the primary runs for PS 10Ex sub-tasks
evaluated on the full and sub test set. Figure 4 and
5 show the performance of the primary runs for PS
100Ex sub-tasks evaluated on the full and sub test
set. Figure 6 shows the performance of the primary
runs for AH 10Ex sub-task evaluated on the full test
set. Note that the results of PS tasks are reported
by MAP and the ones in AH tasks are reported by
MInfAP200%. We can see from these results that our
submitted runs (named “nttfudan” with highlighted
bars in the figures) achieves very competitive perfor-
mance in all sub-tasks. Especially in the PS 100Ex
EvalFull sub-task, our system achieves the best per-
formance. In the other sub-tasks, our results all rank
at the 3rd place and the MAP scores are close to the
best reported performances. All these results indi-
cate that our system components and the selection
and fusion strategy are effective.
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Figure 2: Performance of primary runs for PS 10Ex
EvalFull sub-task.

In our contrastive runs, we mainly compare differ-
ent fusion strategies of the system components. The
evaluation results of our runs on the PS tasks are
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Figure 3: Performance of primary runs for PS 10Ex
EvalSub sub-task.
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Figure 4: Performance of primary runs for PS 100Ex
EvalFull sub-task.

listed in Table 2. Column P1 in the table refers to
our primary runs and the columns C2-C5 refer to the
four contrastive runs. We can see from the table that
our primary runs with heuristically weighted sum of
selected models is able to achieve stable and high per-
formances in all cases. The linear regression methods
are more reliable than the logistic regression ones.
And linear regression methods (C2) on fewer positive
examples conditions are slightly better than the pri-
mary runs. According to the results in C4 and C5, we
find that either norm the individual model scores or
applying regression methods based on selected mod-
els can improve the performances. This further ver-
ifies that model selection is necessary when multiple
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Figure 5: Performance of primary runs for PS 100Ex
EvalSub sub-task.
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Figure 6: Performance of primary runs for AH 10Ex
EvalFull sub-task.

models are employed in the system.

In addition to the MED’16 test data, we also evalu-
ate our developed system on the MED’14 test dataset
to explore the effectiveness of our system compo-
nents. Under the 10Ex condition, we find that by
using the deep spatial features only, we can reach the
MAP score of 26.7. If we further add object features
in the system, the MAP can reach to 28.6. Then in-
corporating the motion and audio features can help
improve the MAP to 31.6 and 32.3. By further intro-
ducing the concept detectors into the system, the per-
formance rises to 34.3. When fusing with the global
features on selected frames, the MAP can rise by a
margin of 0.5. At last, fusing with zero-shot methods



Table 2: Results (MAP) of our primary and con-
trastive runs on PS tasks.

Task P1 C2 C3 C4 C5
PS 10Ex EvalFull | 26.7 | 27.0 | 17.2 | 23.2 | 19.0
PS 10Ex EvalSub | 32.8 | 35.1 | 23.6 | 30.6 | 26.0
PS 100Ex EvalFull | 38.6 | 21.8 | 5.9 | 38.1 | 28.9
PS 100Ex EvalSub | 45.7 | 27.8 | 9.7 | 47.6 | 35.8
can further boost the MAP by 1.3.
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